Pertussis toxin does not inhibit muscarinic-receptor-mediated phosphoinositide hydrolysis or calcium mobilization.

نویسندگان

  • S B Masters
  • M W Martin
  • T K Harden
  • J H Brown
چکیده

Pertussis toxin was used to examine the role of the inhibitory guanine nucleotide regulatory protein, Ni, in muscarinic-receptor-mediated stimulation of phosphoinositide turnover and calcium mobilization. In cultured chick heart cells, pertussis-toxin treatment inhibited muscarinic-receptor-mediated attenuation of isoprenaline-stimulated cyclic AMP accumulation. This finding is consistent with the proposal that pertussis toxin blocks the capacity of Ni to couple muscarinic receptors to adenylate cyclase. In contrast, treatment of chick heart cells or 1321N1 human astrocytoma cells with pertussis toxin did not block muscarinic-receptor-mediated stimulation of phosphoinositide hydrolysis, as measured by [3H]inositol phosphate accumulation in the presence of Li+. Pertussis-toxin treatment also had little effect on basal and muscarinic-receptor-stimulated phosphatidylinositol synthesis, as measured by the incorporation of [3H]inositol into phosphatidylinositol. Activation of muscarinic receptors also enhances the rate of unidirectional 45Ca2+ efflux in 1321N1 cells; this response, like phosphoinositide hydrolysis, was not prevented by pertussis-toxin treatment. Our data suggest that muscarinic receptors are not coupled to phosphoinositide hydrolysis or calcium mobilization through Ni.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria.

Muscarinic agonists can stimulate rather than inhibit cardiac muscle in some preparations. In left atria from hatched chicks, treatment with pertussis toxin reversed the membrane action of carbachol from hyperpolarization to depolarization and reversed the inotropic effect of carbachol from negative to positive. Acetylcholine also depolarized the membrane and increased the force of contraction ...

متن کامل

Evidence that muscarinic cholinergic receptors selectively interact with either the cyclic AMP or the inositol phosphate second-messenger response systems.

The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol p...

متن کامل

An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover.

To investigate whether a particular receptor subtype can be coupled to multiple effector systems, recombinant M2 muscarinic receptors were expressed in cells lacking endogenous receptor. The muscarinic agonist carbachol both inhibited adenylyl cyclase and stimulated phosphoinositide hydrolysis. The stimulation of phosphoinositide hydrolysis was significantly less efficient and more dependent on...

متن کامل

Acetylcholine-induced desensitization of muscarinic contractile response in Guinea pig ileum is inhibited by pertussis toxin treatment.

We investigated the effects of pertussis toxin treatment on acetylcholine-induced desensitization of the muscarinic contractile response in guinea pig ileum. Incubation of the isolated ileum with acetylcholine (30 microM) for 20 min caused a decrease in the sensitivity of the ileum to the contractile action of the muscarinic agonist oxotremorine-M. This desensitization was characterized by an i...

متن کامل

The actions of Pasteurella multocida toxin on neuronal cells☆

Pasteurella multocida toxin (PMT) activates the G-proteins Gαi(₁₋₃), Gα(q), Gα₁₁, Gα₁₂ and Gα₁₃ by deamidation of specific glutamine residues. A number of these alpha subunits have signalling roles in neurones. Hence we studied the action of this toxin on rat superior cervical ganglion (SCG) neurones and NG108-15 neuronal cells. Both Gα(q) and Gα₁₁ could be identified in SCGs with immunocytoche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 227 3  شماره 

صفحات  -

تاریخ انتشار 1985